GABAergic inhibition controls neural gain in inferior colliculus neurons sensitive to interaural time differences.
نویسندگان
چکیده
We investigated the role of GABAergic inhibition on the responses of inferior colliculus (IC) neurons sensitive to interaural time differences (ITDs) in anesthetized guinea pigs. Responses to static and dynamic ITDs were obtained before, during, and after recovery from ionotophoretic application of GABA, or antagonists to the GABA(A) receptor gabazine and bicuculline. For most neurons, a linear relationship was observed between discharge rates evoked by a particular ITD during drug application and control discharge rates. Blocking GABAergic inhibition, or adding exogenous GABA, scaled IC discharge rates in a multiplicative (divisive) and/or additive (subtractive) manner. When the influence of iontophoresed GABA antagonists or exogenous GABA on discharge rates was accounted for, GABAergic inhibition was found to have no effect on the ITD tuning properties of IC neurons. The tuning sharpness of ITD functions, the ITD that evoked 50% response magnitude, and the relative symmetry of ITD functions around their peak response were unaffected by blockade of inhibition or addition of tonic inhibition. However, the ability of neurons to discriminate between ITDs by virtue of differences in their discharge rate was altered by blocking or adding GABA. We propose that inhibition in the IC is involved in the control of the neural gain of the output of IC neurons rather than the regulation of ITD tuning. This gain control appears to arise from a combination of additive and multiplicative processes, and may involve mechanisms such as shunting inhibition or changes in the efficacy of inhibitory and excitatory inputs.
منابع مشابه
Bilateral inhibition generates neuronal responses tuned to interaural level differences in the auditory brainstem of the barn owl.
I investigated the neural algorithms by which neurons gain selectivity for interaural level difference in the brainstem of the barn owl (Tyto alba). Differences in the timing and in the level of sounds at the ears are used by this owl to encode, respectively, azimuthal and vertical position of sound sources in space. These two cues are processed in two parallel neural pathways. Below the level ...
متن کاملRole of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus.
A major cue for the localization of sound in space is the interaural time difference (ITD). We examined the role of inhibition in the shaping of ITD responses in the inferior colliculus (IC) by iontophoretically ejecting gamma-aminobutyric acid (GABA) antagonists and GABA itself using a multibarrel pipette. The GABA antagonists block inhibition, whereas the applied GABA provides a constant leve...
متن کاملBlocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus.
Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were recorded to interaural phase modulation (IPM) before, during, and after iontophoresis of bicuculline, an antagonist to the inhibitory neurotransmitter GABA. Sensitivity to the direction of virtual motion resulting from IPM is an emergent property of neurons at the level of the IC. One model to ac...
متن کاملNeural mechanisms of sound localization in an echolocating bat.
The mustache bat emits a three-harmonic echolocation pulse. At the external ear, large interaural intensity differences are generated only when a sound originates within a limited area of two-dimensional space, and this area is different for each pulse harmonic. As a consequence, the external ear generates pronounced binaural spectral cues containing two-dimensional spatial information. This in...
متن کاملThe role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system.
The barn owl uses interaural time differences (ITDs) to localize the azimuthal position of sound. ITDs are processed by an anatomically distinct pathway in the brainstem. Neuronal selectivity for ITD is generated in the nucleus laminaris (NL) and conveyed to both the anterior portion of the ventral nucleus of the lateral lemniscus (VLVa) and the central (ICc) and external (ICx) nuclei of the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 26 شماره
صفحات -
تاریخ انتشار 2005